White Rabbit for VLBI Paul Boven

<boven@jive.eu>

- J.C.J. Koelemeij (VU/OPNT)
- C. v. Houten (VU/OPNT)
- R. Smets (SURFnet)
- P. Maat (ASTRON)
- A. Szomoru (JIVE)

White Rabbit in a Nutshell

WR: 1ns accuracy for distances up to 10 km
Open Source Hardware/Software project
Initiated at CERN (LHC beam timing and control)
Already in use in several instruments, very active community

- 1Gb/s Ethernet ports (Synchronous Ethernet)
- Transports 10MHz reference frequency, 1PPS, Time-of-Day
- 125 MHz Ethernet Carrier at far end tracked by Phase-Locked Loop
- PTP (IEEE1588v2) for precise timing information
- BiDi SFPs so outbound and return signal is on the same fiber
 - Standardized on 1000base-BX10 SFPs (10km, 1310nm/1490nm)

UTC Distribution in the SKA1

One of the SADT (Signal and Data Transport) work packages:

Deliver local realisation of UTC from the central atomic clocks to the receptors in the field

- Phasing up the (sub)-arrays (aid in fringe search)
- Tying measurements to absolute time (e.g. pulsar timing)

Challenges:

- Distance (up to 173 km)
- Climate
- Overhead Fiber in South Africa
- Mixed fiber types
- Accuracy: 2 ns (1σ) over decades

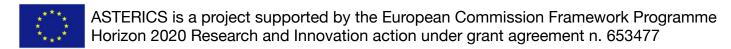
Effects on stability and accuracy

- Reach depends on optical wavelength. 1310nm works up to 60km,
 1550nm can reach up to 120km (fiber attenuation is lowest @1550 nm)
- Temperature of the end-points
 - Changes SFP laser wavelength (~0.1nm/°C)
 - Due to fiber dispersion, changes the delay (17ps/nm/km @1550nm)
 - Use temperature stabilised (DWDM) SFPs for longer links (needs external DWDM filter)
- Fiber type: G.652.D has low dispersion at 1330nm, but high at 1550nm
 - G.655 (non-zero dispersion shifted) has less dispersion at 1550nm but slightly more attenuation, and is more expensive
- Temperature of the fiber
 - Changes index of refraction, which WR compensates for (α)
 - Residual effect: ratio of refractive indices changes
 Remedy: Use wavelengths that are close together
 SKA design: C21/C32, i.e. 1560.61nm / 1558.98nm (1.63nm)

Worst Case PPS Error

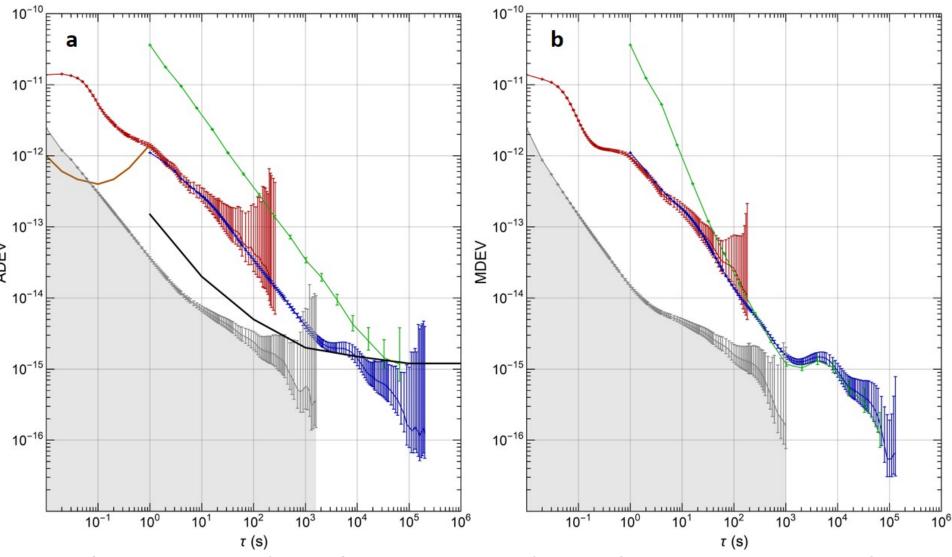
- 80 km: Longest link in SKA1-Low
- 173 km: Longest link in SKA1-Mid, with 2x repeater

	1310/1490	1490/1550		1490/1550 + TC		DWDM	
(all values in ps)	20 km	80 km	173 km	80 km	173 km	80 km	173 km
Delay Calibration	10	10	30	10	30	10	30
Link Restart	75	75	225	75	225	75	225
Received Power Var.	30	30	90	30	90	30	90
Determination of a	75	75	225	75	225	165	375
Wavelength Uncert.	141	1240	2682	1240	2682	160	346
Temp. dependence a	25	100	216	100	216	3	6
TC of WR-Zen (25K)	94	94	94	94	94	94	94
TC of WR-Switch (1K)	8	8	8	8	8	8	8
Uplink SFP temp	2.5	1400	1580	280	460	0	0
Downlink SFP temp	14	68	422	68	136	0	0
Total	475	3100	5550	1915	4600	545	1174


See: P. Boven, DWDM stabilised optics for White Rabbit DOI: 10.1109/EFTF.2018.8409035 IEEE Proceedings, EFTF 2018

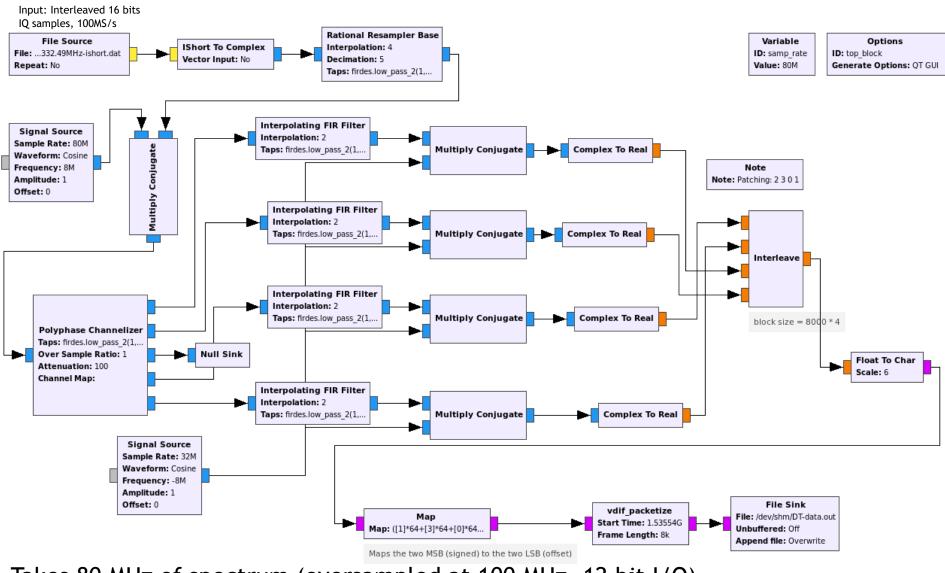
Frequency Stability

Can we transport a H-maser reference? LOFAR Groningen Buinen 65 km **BDOA** 2x 67 km SURF NET Astronomy ESFRI & Research Infrastructure Cluster CAMRAS WSRT O TS GM **D** BDOA TS Slave 35 km H-maser Dwingeloo Zwiggelte


- Uses WR devices with 'Low Jitter Board' improvement
- WR in Dwingeloo Telescope also has a high quality cleanup oscillator
- Bi Directional Optical Amplifiers to extend the link
- Runs on existing SURFnet production DWDM network

Results over 2x 67km

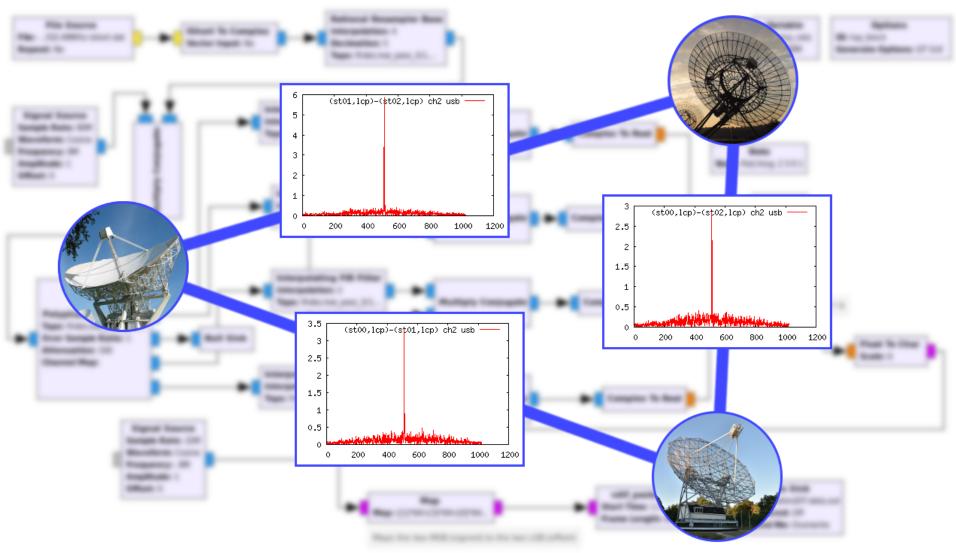
WSRT - Groningen - WSRT



Red: ADEV/MDEV, 50 Hz. Blue: ADEV/MDEV, 0.5 Hz. Green: ADEV/MDEV 1PPS Black: H-maser specifications. Brown: Cleanup Oscillator. Grey: noise floor

JIVE

A VLBI Formatter in


Takes 80 MHz of spectrum (oversampled at 100 MHz, 12 bit I/Q).

PFB, creates 4 sub-bands of 16 MHz each, 2 bit sampled, single thread VDIF format. SDR hardware is capable of 1024 Mb/s. Currently a batch process, 40s at a time.

Fringes with the Dwingeloo Telescope

2018-08-29: 4C39.25, 1332 MHz

Recorded 10 s of data (LCP only) using SDR, locked to Rubidium + GPS Correlated at JIVE using the SFXC correlator.

Next: Dig 300m fiber to complete WR link!