

VLBA Status Walter Brisken

Outline

- Current issues
- Infrastructure activities
- Ongoing development activities

Current issues: COVID-19

- VLBA continues to operate
 - Operations and site staff are reporting to work
 - Most others working from home
 - Upcoming call for proposals unlikely to be affected
 - All antennas still functioning
- Maintenance is more difficult
 - Inter-site travel suspended
 - Major maint visits are on hold (usually 2-3 per year)
 - Saint Croix repairs nearly completed, but on hold
- Development work slowed
 - Software largely locked-down but development continues
- NRAO will begin ramping up return-to-office in early June

Current issues: cold weather operation

- Parts in the Focus/Rotation subreflector mount suffer high failure rates in cold temperature (below 10F)
- A study is underway to determine best way to proceed
 - Different lubricants?
 - Stronger, less brittle, materials for key parts?
 - Heaters on key mechanisms?
- Goal: robust operation down to at least 0F
 - Much less than 1% of observing time

Ongoing infrastructure activities

- Geodetic-grade GPS receivers at all VLBA sites
 - Used by geodesists and astronomers
 - 5 sites have receivers now
 - UNAVCO had these units deployed
 - Data made available to public
 - NGS expressed interest in funding deployment
 - Timescale uncertain
- New weather stations
- New "E"-rack in VLBA antenna receiver cabin
 - Room for new equipment, including new samplers
 - Designed to prevent EMI from digital equipment from entering receivers
 - Will implement modern power supplies and diagnostic capabilities

E-rack at Pie Town

Ongoing development activities

- High-speed network to VLBA sites
 - Improved diagnostics
 - New low-latency capabilities
 - Improved inter-operability with IVS, EVN
- New synthesizers
 - Antenna maintainability
 - Improved tuning flexibility (inter-operability, RFI avoidance)
- VLBA New Digital Architecture
 - Expansion of capabilities / increase in flexibility
 - Antenna maintainability
 - RFI immunity
 - External user opportunities
- Mark5 units to be retired in June 2020

High speed networks

- NSF-funded initiative
- All IOVLBA sites to reach 200 Mbps network service
 - Operation of links funded for 2-3 years
- All IOVLBA sites internally ready for IO Gbps
- I VLBA site to achieve 5+ Gbps service (if opportunity allows)
 - Would serve as experiment to move data recorder to Socorro
- Progress
 - 8 sites have >=200 Mbps service
 - MK, PT, KP operating at I Gbps
 - LA and HN under contract
 - Completion delayed; expected by September

L404B synthesizer modules

- Old (L104) synthesizers have limited capabilities
 - Very coarse tuning at alternating 200 and 300 MHz steps
 - Concern about long term maintenance
- New units arbitrarily tunable
 - Any frequency between 2 and 16 GHz
 - More tuning range than L104, anticipating need by Ka-band receiver
 - Uses an NRAO-patented phase-locked direct digital synthesizer in combination with comb generator
- Progress
 - One unit deployed
 - Remainder of units to be deployed by approx. summer 2021

VLBA New Digital Architecture (VNDA)

- Existing sampler / digital channelizers (RDBEs) are becoming difficult to maintain with obsolete components
- Replacement system developed to following philosophies
 - Use commercial off-the-shelf (COTS) hardware where possible
 - Use standard interfaces and data formats where possible
 - Self diagnostic capabilities designed in from start
 - MTBF-informed design
 - Consider downstream obsolescence
 - Digitize as close to receivers as possible
 - Use multicast, to allow flexible re-use of signals

VLBA New Digital Architecture (VNDA)

- Requirements
 - Backwards compatible with existing VLBA capabilities
 - Support for 2, 4, 8 (and maybe 12) bits per sample
 - Absolute timing stability at sample level
 - Support for non-VLBI use
 - E.g., pulsars, spectroscopy, radar
 - Some use cases may require user-supplied hardware
 - Some use cases may require user-supplied software
 - Sustainability
 - Improved in RFI tolerance and avoidance
 - Improved compatibility with other VLBI systems
 - Reduced operations footprint
 - Increased maintainability

VLBA New Digital Architecture (VNDA) Internally called "Oryx"

- Major new components
 - Sampler modules, in receiver cabin
 - Creates 4 "digital IFs", 1024 MHz bandwidth, in VDIF format
 - 100 Gbps network switch
 - Fabric that connects all signal processing and recording components
 - Channelizer module
 - Creates digital baseband channels
 - Requantizes to 2 (or other) bits per sample
 - Computes calibration metadata (switched power)
 - Timing module
 - Need repeatable I PPS tick and clock signals in receiver cabin

May 5, 2020

VLBA New Digital Architecture (VNDA)

- Status and timeframe
 - Prototype hardware purchased
 - Risk reduction / prototyping phase near completion
 - CoDR on May 14
 - Summer 2022: target for array-wide deployment (funding permitting)
- External stakeholder requirements
 - We are open to developing toward external requirements
 - The sooner, the better
 - The more specific, the better
 - We would request supplements for requirements that dramatically raise cost or effort

Desired upgrades

- Analog IF system upgrade
 - Essentially plumbing; needed to significantly upgrade bandwidth
- New or upgraded receivers
 - Ka-band (approx. 28-36 GHz)
 - Wide-band X-band: 8-12 GHz
 - X-, Ku-, Q-band receivers would benefit from new amplifiers
- Full-bandwidth (8+ Gbps) network to each site
 - Requires 80+ Gbps to aggregate at correlator
 - Real-time correlator to be placed at major network hub?
- Water vapor radiometers
 - For atmospheric calibration
 - Being explored by ngVLA project

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

May 5, 2020