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Abstract
This document covers the deliverable D7.6 of WP7.5. It deals with an advanced calibration algorithm for 

radio  interferometry  data.  In  particular,  an  algorithm  for  robust  self-calibration  that  applies  to  full-

polarization  visibility  data  and  implements  direction  dependent  effects  (DDE)  corrections  has  been 

implemented. The main part of the algorithm uses singular value decomposition (SVD) to extract source 

components directly from visibility (UV) data. Calibration solutions for interferometer gains are then made 

on these extracted SVD components. This avoids the traditional self-calibration approach of extracting 

clean components via imaging the data, which can introduce a corrupted image model.  In this way, the 

extraction improves the signal-to-noise ratio, avoids some DDEs and makes the calibration more robust. 

It  can be applied  to both polarization channels  and so is  applicable  to full-polarization calibration  of 

visibility data. The algorithm has been implemented in a python module called RobVisCal which utilizes 

casacore functionality, and has been made publicly available.

COVID-19 affects the Deliverable D7.6, to which the Art.51 applies as follows:     

Due to travel restrictions the advanced calibration algorithms will be slightly de-scoped. The requirement 

of developing direction dependent calibration and self-calibration will be ful7lled, but focusing on LOFAR 

LBA. 

1 Introduction

Radio  interferometry  differs  from  optical  imaging  in  that  it  does  not  produce  images  directly. 
Interferometry images are based on the correlation of signals from multiple receptors. Its directly  
measured data is called visibilities, and to produce images it typically must Fourier transform these 
visibilities. However, visibilities can be corrupted by incomplete knowledge of the receptor gains. 
Calibration is the process of trying to determine these gains. One important calibration technique is 
self-calibration or self-cal as it is known.

Traditional self-cal is done by making a clean image, using so-called CLEAN deconvolution, and 
using this as a model image, via an inverse Fourier transform, to fit to the measured visibilities,  
producing gain solutions. This procedure does not work well in low signal-to-noise ratio situations 
as it  is  not  very robust.  Partly,  this is due to images being under-determined: images typically 
contain  more  degrees-of-freedom  than  the  measured  visibilities,  which  is  just  the  number  of 
receptors squared.

In this document, we will detail an algorithm that attempts to resolve the limitations of traditional 
self-cal by doing calibration directly on visibilities rather than the images. The process of obtaining 
model visibilities is done by SVD, rather than CLEAN images converted to visibilities.

2 The Calibration Problem

The core problem of radio interferometric calibration can be stated as follows. An  interferometer 
consists of a number of antennas distributed over what is called an array configuration. The wave 
form (voltages) signal from these antenna are correlated in pairs. Together these powers are called 
visibilities. The visibilities are related to the sky image through a Fourier transform. A complication 
is that the measured visibilities are in practice corrupted in numerous ways, but fortunately many of 
these effects can be modeled by introducing a multiplicative factor called gain. Gains ultimately are 
the amplification  of  the  received  signal,  but  can also  include things  such as  the atmospheric 
influence or Faraday rotation on the impinging radio waves.

The main relationship involved in gain calibration is modeled as the nxn matrix equation
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V=GRG
H
+N  eq. 1

where n is the number of antennas, V are the measured visibilities, G are the gains, R are the true  
visibilities and N is the noise. The problem is to determine G. A standard approach is to assume a  
model for the true visibilities R and then find a G solution that to the equation. Since the noise is 
not  known,  an exact  solution is  not  possible.  A reasonable solution  can anyways be found if, 
instead of the exact equation, one uses a fitting or minimization equation such as

min|V−GRG
H
|   eq. 2

where the ||  brackets are  some matrix norm. Most  commonly the norm used is  the L2 norm, 
meaning  the  components  are  squared  and  summed  up.  This  is  known  as  the  least-squared 
estimate. There are various algorithms for finding a solution to this L2 minimization problem, but 
this mainly affects the computational efficiency rather than the solution itself. In what follows the 
problem formulation given here, and its solution, we will call the standard gain calibration algorithm 
or more succinctly: LS calibration. See [1] for more background.

3 Proposed Calibration Method

The standard LS calibration is an effective way of estimating gains. However, it suffers from the 
fact that it relies on having a model for the visibilities, which is of course not well known. Here we 
detail a different approach that avoids the need for an explicit model. The idea exploits that  the 
calibration of radio telescopes is often done on a field-of-view (FoV) that consists of fairly strong, 
unresolved,  point-like sources,  and that  these sources are statistically  independent  from other 
components in the FoV.

Mathematically, a typical calibration scenario is

R=ASA
H
+Rb eq. 3

where R is, as before, the uncorrupted visibilities, A is the array response vector, S is a low-rank 
diagonal matrix of source fluxes and Rb is the rest, i.e. background, of the visibilities. Now, putting 
eq. 3 into eq. 1 we get

V=GASA
H
G

H
+Rr  

where  we have put  Rr=Rb+N .  The  singular  value decomposition  of  V,  V=U σU
H

and 

separating out only a few of the largest singular values leads to

Ulσl Ul

H
+V r=GASA

H
G

H
+Rr  eq. 4

where one can identify V r=Rr , σl=S and finally

Ul=g∘ A eq. 5

Here, the G matrix multiplication has been converted into an element-wise product of its diagonal 
components. Since the columns of A have a known form (they are the array response vector to a 

direction), and Ul is readily determined from the measured visibilities, eq. 5 provides a way of 

solving for the gains g.

The main tool is therefore the SVD of the visibilities. Since calibration is often done in short snap-
shot images and the dimensionality is just the number of antennas, the computation is not that 
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intensive. Alternatively, the approach can be seen as a principle component analysis (PCA) or also 
a Karhunen-Loeve transform. These two methods have been used in radio astronomy in the past 
[2], but only for imaging, not for calibration.

To test the proposed calibration scheme,  we produced a simulation.  The simulation consists of 
images with several point sources with user defined positions, fluxes and additive noise. From 
these images, visibilities were synthesized and gridded onto antenna positions. The positions are 
the same as those for the LOFAR LBA configuration of the Swedish LOFAR station. Likewise the 
frequencies were the same per the LBA: 10 to 100 MHz. Discretization was not necessary as 
LOFAR has enough bit  range  for  most  observing scenarios.  The visibilities  thus  obtained are 
regarded as the true visibilities. Finally, these true visibilities are corrupted by multiplying them with 
randomly generated  gains,  one  complex  value  for  each  antenna,  resulting  in  the  measured 
visibilities. 

Subsequently, the proposed SVD gain calibration was performed on the measured visibilities V as 
follows. SVD was applied to V and the singular vector corresponding to the largest singular value 
was selected.  This singular vector should represent the voltage response due to the strongest 
source in the field. The response vector is then phased-up (pointed) towards the source direction; 
either it is a source calibrator with a known position or the direction is determined from the vector 
itself.  After  this phase center shift  the components of  array response vector are all  just ones, 
A=vec(1).  Thus, from eq. 5 the similarly source  centered singular vector is equal to the gains. 
Using this as an estimate for the gains, they are applied to the original measured visibilities V to 
produce calibrated visibilities. Finally,  the calibrated visibilities are imaged,  using just  a  simple 
Fourier transform, know as a dirty image. The calibrated image can be compared to the original 
uncalibrated image, and with  the image from standard LS calibration. For the LS calibration, the 
initially given source image was used as the model.

The results of the simulation are shown  as images in Figure   1. As one can see, there are 4 
sources and  the  image has  been  phased up  to  the  strongest  source.  The  dynamic  range  is 
intentionally low to enhance the differences and to show how the proposed calibration dubbed 
RobVisCal copes  in  such  conditions.  In  the uncalibrated,  directly  measured  image A),  only  3 
sources can be seen clearly, and the dynamic range is about 10. For the calibrated images B) and 
C), all 4 sources can be seen and the dynamic range has improved by a factor 2. In B) standard LS 
calibration has been applied using a perfect model, that is, the model was the true image. While in 
C) the proposed RobVisCal was applied and no model was needed (the direction to the strongest 
source was determined from the data itself). Finally, in D) the LS calibration was also applied, but 
this time an imperfect (corrupted true image) model was used resulting in an image that was not 
much better than the original, uncalibrated image, A).

One of the reasons why RobVisCal is able to calibrate in these low signal-to-noise conditions, and 
despite multiple other sources in the field in addition to the calibrator source, is because the SVD 
provides an efficient component  extraction.  Although not show here, inspection of the  extracted 
visibilities  based  on  the singular  vectors  of  the full  visibility  matrix  clearly show each  source 
separately. Since RobVisCal uses these extracted visibility components to do the calibration it is 
not  affect  as much  by  noise  or  multiple  additional  sources.  This  provides  the  necessary 
robustness.

The simulation shown here does not include DDEs for the sake of clarity in demonstrating how the 
basic RobVisCal performs. Adding DDEs to the calibration is however not difficult  since one only 
needs to add them as a multiplicative (corrupting) factor to the gains g in the equations above. In 
particular, DDEs relating to beam gain patterns, that is the fact that an antenna’s gain over the 
field-of-view is not uniform, has been implemented. This has been done  using the  dreamBeam 

software package  [3],  which was part  of  another deliverable of  the RINGS project.  It  provides 
antenna beam models for various telescopes such as LOFAR. It is fully polarimetric and produces 
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Jones matrices (polarimeter gains) based on real, observational parameters.  The beam models 
provided by dreamBeam were tested and found to be satisfactorily accurate compared to real data, 

see [4]. These Jones matrices can be applied to the visibilities inversely to take into account this 
type of DDE. dreamBeam can also model other types of DDEs such ionospheric effects.

Thus we find that RobVisCal is comparable to LS calibration with the caveat that the model used 
for LS is good. However, if the model is not that good, say with a distortion of more than 15%, then 
RobVisCal outperforms LS calibration. So as expected, RobVisCal is robust against ill-determined 
models.

4 Results

Having seen that simulations give promising results for RobVisCal, we turn to real data. The real 
data is polarized, so the RobVisCal method mentioned previously in an implicitly scalar context had 
to be generalized to work with the two autocorrelated polarization channels. For LOFAR this means 
the  XX  and  the  YY  polarization  channels,  and  specifically,  RobVisCal  was  applied  to  each 
separately.
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Figure 1: Simulated images of four sources in the sky based on various types of calibration: A) 
Uncalibrated image, B) standard LS calibration with perfect model (model=true image), C) proposed 
RobCal calibration, D) LS calibration with imperfect model (image corrupted by 15%).
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The real data comes from the Swedish LOFAR LBA, taken on 22 April 2020. The LBA sees the 
entire sky and consists of 96 dual-linear-polarized antennas and has a maximum baseline length of 
about 50 m. A full-Stokes image of the raw, uncalibrated data is shown in Figure 2 at a frequency of 
43.4 MHz. The Stokes I (total flux) image shows Cassiopeia-A close to the center, Cygnus-A to the 
west of it and the galactic plane running through them.  The flux levels are given in arbitrary units 
as no absolute flux calibration was applied. The Stokes Q and U show strong instrumental DDEs 
(dipole pattern).

After applying RobVisCal to the uncalibrated data and imaging it, the result can be seen in Figure 
3.  It  used  the  same  imaging  tool  as  in  the  uncalibrated  case,  the  only  difference  was  the 
calibration. The dynamic range improvement in Stokes I is modest, but is still an improvement. In 
fact  one  source,  Taurus-A,  which  is  not  visible  in  the uncalibrated  case,  can  be  seen  in  the 
RobVisCal case close to the local horizon in the North-East corner. The U and V images do not 
show much improvement, but this is to be expected as RobVisCal cannot be directly applied to 
cross-correlated  polarization  channels  since  there  is  no  source  signal  there.  This,  in  turn,  is 
because  the  sources  are  not  polarized.  If  there  had  been,  RobVisCal  could  be  applied 
(generalization of the hitherto discussed algorithm), so it is applicable to full-polarization. Indeed 
the  Stokes  Q  image,  which  is  based  on  the  auto-correlated  polarizations,  shows  a  marked 
reduction in the instrumental polarization.

There is still a lot of instrumental polarization left as can be seen in the Stokes U and V images of 
Figure 3. This is clearly the effect of the dipole-like LBA antennas. Although not shown here, after 
applying the beam patterns from dreamBeam further reductions in the instrumental polarization can 

made.
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Figure 2: Raw, uncalibrated, allsky Stokes images from the Swedish LOFAR LBA taken on 22 April 
2020. Flux levels are in arbitrary units.
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The results indicate that the proposed RobVisCal works with real data, in that it provides good 
calibration, improving dynamic range. It’s performance is comparable to  standard LS calibration, 
but again, it does not require a sky model. Sky models for low frequencies do exist, but most are 
for Stokes I only, and are extrapolated from observations at higher frequencies. Alternatively one 
would have to use cleaned images and thus self-cal.

5 Software Description

The  calibration  algorithm  proposed  here  has  been  implemented  as  python3  module  called 
robviscal.py.

Its dependencies are as follows. The linear algebra involved, such as the SVD, uses the numpy 

package,  while  the parts  that  involve  radio astronomy specific functionality  uses the  python-

casacore [5], which is a python implementation of the casa-core software suite supported and 

developed by this project. For the DDEs, beam pattern models are provided by dreamBeam, which 

is part of deliverable D7.4 and described in [4].

RobVisCal takes  fully  polarized  visibilities,  implemented  as  numpy  arrays,  and  the  antenna 

configuration as inputs and generates gain estimates. No model  visibilities are necessary.  The 
module is part of a larger package called  iLiSA, and is publicly available through for instance 

github  [6].  It  handles  LOFAR raw data  and  can  produce  images.  Detailed  documentation  of 
RobVisCal is included in the package.
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Figure 3: Same as previous Figure but with the proposed calibration method applied.
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The  computational  cost  of  RobVisCal  is  almost  entirely  down  to  the  SVD.  The  size  of  the 
visibilities, in the case of LOFAR LBA, is  2*96 squared, and one such SVD is no problem for 
computers nowadays both with regards to memory or time. All the results presented here were 
done on a laptop and were done in under 1 second.
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