

H2020 Grant Agreement No. 730562 –
RadioNet

PROJECT TITLE: Advanced Radio Astronomy in Europe
STARTING DATE 01/01/2017

DURATION: 48 months
CALL

IDENTIFIER:
H2020-INFRAIA-2016-1

TOPIC: INFRAIA-01-2016-2017
Integrating Activities for Advanced Communities

Del iverable 6.4

Descript ion of the Control of the digital
frontend and backend, Recording and

Correlat ion software.

Due date of deliverable: 2020-06-30
Actual submission date: 2020-12-07
Leading Partner: STICHTING NEDERLANDSE WETENSCHAPPELIJK

ONDERZOEK INSTITUTEN (NWO-I)

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 2 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

Document information
Document name: Description of the Control of the digital frontend and backend,

Recording and Correlation software.

Type Report

WP WP6 – BRAND EVN

Version date: 2020-12-04

Authors (Institutes) Walter Alef (MPG)
Hans van der Marel (NWO-I)

Dissemination Level
Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission
Services)

Index
1 INTRODUCTION 3

2 CONTROL SOFTWARE FOR THE ANALOGUE FRONTEND 4

3 CONTROL SOFTWARE FOR THE DIGITAL FRONTEND 5

3.1 INTRODUCTION 5
3.2 CONTROL SOFTWARE FOR THE SPARTAN3 FPGA 6
3.3 FIRMWARE FOR THE CONTROL FPGA 8

4 SOFTWARE FOR CONTROL OF THE DIGITAL BACKEND 8

5 SOFTWARE FOR HANDLING THE DATA RECORDING 9

6 MODIFICATIONS TO THE DIFX SOFTWARE CORRELATOR 9

6.1 SCRIPT FOR MANUAL CONVERSION OF OUTPUT BANDS 11
6.2 NATIVE IMPLEMENTATION IN DIFX CORRELATOR 11
6.3 SPECIAL CALIBRATION STEPS IN POST-PROCESSING 13

7 LITERATURE 13

8 ACRONYMS 14

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 3 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

ELUCIDATION:
COVID-19 affected the Deliverable D6.4, to which the Art.51 applies as follows: Since the hardware
(backend and frontend) were only delivered in autumn 2020, only a description and some testing of
the control, recording and correlation software were feasible before the end of the RadioNet. The full
evaluation will be done in 2021.

The control software of the digital frontend could be tested to the extent that a 0-baseline test
between two independent samplers in the sampler chip could be performed and analysed (see
deliverable D6.3). The recording could partially be tested with EHT data. The correlation tests with
GMVA and EHT data signify roughly a 90% validity for BRAND data.

1 Introduction
The BRAND receiver needs to be integrated electronically into the Effelsberg antenna system for
setting it up and controlling it via the standard Effelsberg station software. As the BRAND receiver
prototype has been designed with the intention of making it most suitable for observations in Very
Long Baseline Interferometry (VLBI) networks — in particular the European VLBI network (EVN) — it
should be easily adaptable to other antennas. An important aspect is therefore the description of both
the hardware and software interfaces.

Figure 1: Block diagram of the BRAND receiver. At the left the electro-magnetic radiation is received by the
feed horn. The dewar contains the directional coupler, filters, and the Low Noise Amplifiers, which are cooled to
about 20K. This is followed by the analogue signal processing. The analogue signals are digitised followed by a
digital band selection. The digitised data is output on the right via optical fibres and will be received at the
telescope control room for further processing and recording. In addition, inside the receiver box are the power
supplies for all units and the hardware interface for the receiver control. Power supplies and receiver control are
connected to the outside for obtaining power and network connectivity.

	

	

	 	

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 4 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

Here we have to distinguish between the analogue frontend and the digital frontend, which are both
very different with respect to setup, control and monitoring. The analogue part is not very different
from the frontends of other Effelsberg receivers. The digital frontend on the other hand is a novelty
and only a basic software is being implemented initially to enable test observations as soon as
possible. Later the control software will be enhanced to control more complex operations of the digital
frontend. The output of the digital frontend is formatted as standard VDIF (VLBI Digital Interface
Format)1 packets and is transported over up to 64 10 GE fibres. This data can either be recorded
directly for debugging and testing purposes, or it can be further processed by the digital backend.

The COVID-19 induced delays in the development of the digital backend board “BRAND_C” led to
delays also in the development and testing of the corresponding control software. So this whole
deliverable has been delayed by about six months. Other delays due to the pandemic have been
introduced in the integration of the analogue frontend and the corresponding control software.

As digital backend serves a modified Digital Base-Band Converter 3 (DBBC3). The DBBC3,
developed by a JRA of RadioNet3 (contract 283393), has been operational at several radio astronomy
stations for a few years now under the control of the VLBI Field System [1]. It has its own set of
control commands and software interface for the DBBC3. For the BRAND receiver this has to be
extended. Due to COVID-19 access to the labs has been restricted. This lead to a delay of one to two
months in this subtask.

The output of the modified DBBC3 is also formatted as standard VDIF packets and is transported
over several 10 GE fibres. The enormous amount of data, which can reach up to about 100 Gb/s, will
be recorded with Mark 6 disk recorders2 (or similar fast RAID systems). This is a standard setup as is
also being used by the Event Horizon Telescope (EHT) which records at the time of this report 64
Gb/s onto four such recorders with a total of 16 disk modules with 8 disks each. Due to delays in the
digital frontend development this part could not be tested.

On the correlation side, in a “BRAND VLBI network”, a rather complex situation arises. The usable
parts of the BRAND band from 1.5 – 15.5 GHz will be different at each telescope due to different
Radio Frequency Interference (RFI). RFI above a certain limit will render the data in the affected part of
the band useless, and this data will be removed/suppressed by the High Temperature
Superconductor Filters, the digital frontend, and backend.

Rather than just one frequency setup, as is the standard in present day VLBI correlation — with
exception perhaps of the EHT and VGOS —, a BRAND network will have a different frequency setup
for each telescope! This complicates the correlation of the data significantly. Complicated control files
would have to be created by hand with a lot of effort and a high probability of errors. The DiFX
(Distributed FX) correlation software has been enhanced to make the correlation of BRAND data
simple and transparent to the user.

2 Control software for the analogue frontend
No documentation of the control system for the BRAND analogue part of the frontend has been
provided. This part of the BRAND receiver has the standard Effelsberg receiver interface. Its functions
will be accessible to the receiver maintenance group at Effelsberg and to the operators during
observations. It is expected that appropriate documentation will become available within the next
months.

1 http://ivscc.gsfc.nasa.gov/publications/gm2010/whitney2.pdf
2 https://www.haystack.mit.edu/mark-6-vlbi-data-system/ 2 https://www.haystack.mit.edu/mark-6-vlbi-data-system/

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 5 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

3 Control software for the digital frontend

3.1 Introduction
The BRAND_C digital backend consists of one Quad 8-bit 56GSps ADC and up to four Kintex
Ultrascale FPGAs. The central hub for controlling these devices is the Control Software, which runs on
a small computer connected to the board via USB. It is connected to a small Spartan3 FPGA on the
board, which is used as a controller to configure and monitor the other devices.

Figure 2: Digital Frontend board. The sampler chip with a fan for cooling is seen in the centre. The lower left of the
four Kintex FPGA sockets is populated. The small Spartan3 FPGA is seen on the top centre of the board just above
the black cable.

One part of the software developed for this project is the implementation of the central control
software, and also the modification and development of the firmware for the Spartan3 FPGA on the
digital backend board3.

The Kintex FPGAs on the board will receive the sampled data from the ADC and perform the first
filtering stage, which is necessary to deal with the large bandwidth and data rates. The filtered data is
then packetized and sent via 10G Ethernet connections to a DBBC3 digital backend, which performs
the final digital post-processing. This part of the project is described in deliverable D6.3.

3 In this deliverable only the central control software will be described. The firmware is described in the report of the digital
hardware (D6.3).

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 6 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

3.2 Control software for the Spartan3 FPGA
The control software is the central hub for the operator to interact with the BRAND_C digital frontend.
It runs on a small computer that is connected to an FTDI USB controller4 on the digital frontend
board. This FTDI controller is connected to the Spartan 3 Controller FPGA via a parallel bus. This
interface allows the Control Software to interact with the ADC, which is also connected with the
Spartan 3 via control lines.

In addition there are two synthesizers on the board, which are used to produce the necessary
reference frequencies for the sampling process on the ADC and for the data transmission via HSSI
(High Speed Serial Interconnect) between the ADC and the Kintex FPGAs. These synthesizers are
also connected to the Spartan3 to be able to configure them via the control software.
The board also includes a couple of small ADCs, which are used to monitor the voltage levels. These
ADCs are also directly connected to the Spartan3, which allows the Control Software to monitor the
voltage levels and ensure that the voltages are in the correct range for the ADCs and FPGAs to
operate properly.

The control computer is connected to each Kintex FPGA on the board via USB using the RS232
protocol, which allows a serial communication between each FPGA and the control computer.

The control software has been developed in Python 3. This allows the control software to run on
Windows and on Linux operating systems without any changes to the source code. Python is very
well suited for this kind of application, where different kinds of hardware APIs need to be integrated.
There are a lot of open source libraries available in Python for the different functionalities needed,
including APIs for communicating with the FTDI controller, the serial communication via RS232,
Client/Server frameworks and graphical user interfaces.

The BRAND_C board is based on a development board purchased from the manufacturer of the
ADC, which came with a set of Matlab scripts for interacting and testing the ADC device. These
scripts include the following functions:
• communication with the ADC over SPI protocol (Serial Peripheral Interface)

• power on and start up the board and ADC

• configure the ADC

• perform the necessary calibration routines

• capture and plot data from the internal memory on the ADC device.
These Matlab scripts where used as a base for the control software development in Python, which
now includes the same functionality as provided by the Matlab routines. It was further extended to
include all additional functionality needed to perform the initial tests, including a zero-baseline test
between two ADCs on one board (in the same chip).

The largest workload by far was the translation of the several thousands of lines of m-Code (used by
Matlab) to Python3. This had to be done manually, because of subtle differences in these two
programming languages. An automatic translation routine could not be used.

Using Matlab to implement the Control Software was not an option, due to the performance
requirements of Matlab and general stability and reliability issues with the Matlab environment.

The first step in the development process was to implement the communication interface between
the Control Software and the ADC. The control computer is connected to the board using a USB
connection to an FTDI chip, which is connected to the Spartan3 Control FPGA. The FTDI uses a
parallel communication protocol to talk to the Spartan3, which in turn uses an SPI (Serial Peripheral
Interface) protocol to communicate with the ADC.

4 https://en.wikipedia.org/wiki/FTDI

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 7 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

We found a library for Python 3 that implemented the functionality to talk to the FTDI device, which
was another reasons to use Python for the control software. The SPI protocol was implemented using
the Matlab example scripts provided by the sampler manufacturer.

The next step was to implement the routines necessary to start, initialize, configure and calibrate the
ADC device, based on the examples in the Matlab script provided. Since the scripts use internal
MatLab libraries for plotting data or performing FFT calculations, we had to find alternative libraries for
Python to implement this function.

To make the software usable, a simple terminal window function was implemented, using the cmd
library included in Python. This provides simple shell functionality, allowing to type commands to issue
the steps for setting up the system.

As soon as the communication with the sampler was verified, and the calibration routines worked as
with the development board of the sampler manufacturer, the next step was to implement the
functionality to perform a zero baseline test between two ADC channels on the same device and
between two different boards, which is crucial to prove that the board is working as intended. For this
it was necessary to modify the capturing procedure, which is triggered by an external signal, so that
both ADCs start the data acquisition at exactly the same time. The Sampler device has 16 MB of on-
chip memory for this purpose. Due to the huge bandwidth (28 GHz per channel) a precise triggering
of the data acquisition was crucial to generate matching data streams.

Below follows a list of all implemented commands available in the control software:

- startup (starts up and initializes the synthesizers for the ADC and activates the ADC clock)

- poweron (checks the system voltages, performs a system reset, and load the initial configuration
of the ADC)

- act ivatechannel (the ADC has four internal channels, this commands selects which channels
should be activated)

- deact ivatechannel (deactivates the selected channels of the ADC)

- cal ibrategain (performs the gain calibration, necessary for the correct mapping of the input
channel voltages to the sample range)

- cal ibrat ion (performs the power and offset calibration for the selected channels)

- capture (capture the specified amount of samples from the internal memory. If multiple channels
are activated, they are captured in sequence, not in parallel)

- captureparal le l (captures two data streams from the first two channels to the internal memory
in parallel. Necessary for the zero-baseline test)

- plot (plots the frequency spectrum of the selected and captured data stream)

- plott imeseries (plots the captured data streams in the time domain)

- save (saves the selected data stream into a file, in ASCII format)

The following functions are still under development:

- Serial communication (via RS232) with the FPGAs. The library that will be used for this
functionality has already been tested successfully with the DBBC3 backend, which has the same
type of communication. It will be implemented as soon as the Firmware for the Kintex FPGAs will
be available, which is required for further testing and verification.

- Server/Client support. In its final version it is planed to have a Client/Server Architecture similar to
the Control Scheme of the DBBC3, but this has still to be determined, depending on the
requirements of the stations using the BRAND receiver. The library for this functionality has
already been tested successfully, and is in use for the DBBC3 as multicast-parser.

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 8 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

- GUI (Graphical User Interface): At the moment the control software is used in a terminal window.
In the final version a graphical user interface may be implemented, but this has not yet been
decided, and depends on the requirements of the stations using the BRAND receiver.

- Control of the Power Supply: It was planned to have the ability to power on the board via the
control software. But this requires a hardware modification of the actual design, so it is not
implemented yet.

3.3 Firmware for the Control FPGA
The control architecture of the BRAND digital backend is very similar to the development board of the
sampler manufacturer, so it was possible to use the firmware for the Spartan3 control FPGA provided
by them with minor modifications. The following modifications were made to the firmware:
- the original design has three small ADCs connected to the Spartan3, used to check the system

voltages. We connected additional five ADCs to read out the voltages for the Kintex FPGAs.

The firmware was modified to include these connections.

- The BRAND board has additional synthesizers, which are also connected and can be controlled
by the Spartan3.

- The provided firmware did not include the functionality to trigger a data acquisition with an
external signal. This functionality was necessary for the zero-baseline test and thus included.

- The clock line of the first design revision of the BRAND board was not shielded properly and thus
we had stability issues due to the 60 MHz reference clock line. A modification to the board fixed
this problem, but it was necessary to change the clock input pin.

4 Software for control of the digital backend
A DBBC3 serves as digital backend. It will be used as the final processing stage, and will receive and
process the data from the BRAND_C digital frontend via up to 64 10G Ethernet connections. It will
output the processed data via several 10G Ethernet lines to data recorders or the Internet.

In its original form the DBBC3 consists of pairs of up to eight ADB3L ADCs and Core3H processing
boards, which perform the digital processing of the data sampled by the ADCs. For the BRAND
project the ADB3L ADCs will not be used, instead the Core3H boards will receive the data over the
available 10G Ethernet lines.

The currently available firmware does not have the capability to receive data via Ethernet, only the
transmitting part is used. This was left out for performance reasons in the original project5.

For the BRAND project the number of Ethernet transceivers has been increased from four to eight.
The following firmware modifications are necessary for the BRAND project, and are currently
implemented and tested:

- support for eight transceivers, instead of four.
- reactivation of the receiving part in the transceiver IP cores.

- synchronization of the incoming data to produce one parallel data stream

The synchronized data will then be processed by additional filters, either fixed bandpass filters (OCT
mode) or variable Digital Down Conversion units (DDC mode). These modes are already implemented
and in use for observations with the DBBC3 digital backend. The data is output in standard VDIF
format, ready for recording and correlation.

5 JRA DIVA of RadioNet3 (contract 283393)

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 9 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

For the additional functions new commands will be defined and implemented in the internal control
software of the DBBC3. They will be accessible via the Ethernet connection to the DBBC3 control
computer. It is expected that this software will be implemented in Q1/2021.

5 Software for handl ing the data recording
The amount and rate of the data generated by the BRAND receiver is comparable to that of the EHT.
We expect that when the full bandwidth is selected in the digital frontend and backend a maximum
data rate of 112 Gbps can be reached with a BRAND receiver system.

The data rate of the EHT is presently 64 Gbps. The present upgrade plans foresee that when two
frequencies will be observed, a data rate of 128 Gbps can be reached. The EHT records their data on
four Mark 6 recorders, each with four disk modules containing eight disks each. For the APEX and
Pico Veleta telescopes a DBBC3 has been used for the EHT.

It follows that for the recording of BRAND data the same setup and software will be used. Thus no
special software development is needed for recording BRAND data. The DBBC3 will deliver the data
to the data recorders, which will store it in the same way as done for the EHT.

6 Modif icat ions to the DiFX software correlator6
The open source DiFX software correlator has been widely adopted by the astronomical and geodetic
VLBI communities. It is in production use at several large VLBI networks including the LBA, VLBA,
IVS, VGOS, GMVA, EHT, EAVN, and others. It supports multiple phase centres, near field,
line/continuum VLBI, space VLBI, pulsar VLBI, and radio transient searches.

With the “zoom bands” supported since DiFX 2.5+ one can successfully correlate experiments where
stations have mismatched frequency setups. Zoom bands are narrower frequency bands which fall
within the recorded frequency bands and are extracted via FFT during correlation.

Highly mismatched frequency setups occur in VLBI with radio interferometer arrays such as the
phased SMA, ALMA, and NOEMA. Being designed for interferometric observations independent of
each other and of VLBI, the characteristics are uncommon for VLBI; recorded bands are narrow, may
overlap, sampling rates may not be a power-of-2 in MHz. Lesser incompatibilities may also occur at
VLBI stations that use direct RF sampling or full IF sampling systems such as BRAND, CSIRO
Bluering, Effelsberg EDD. BRAND for example is anticipated to provide consistent 128 MHz wide
channels, but tuning is expected to differ between BRAND-equipped and other telescopes.
Between BRAND antennas, on the other hand, the RFI situation will be quite different resulting in
different usable parts of the band. Rather than just one or very few frequency setups, as is the
standard in present day VLBI correlation, a BRAND network will always have a different frequency
setup for each telescope! This complicates the correlation of the data significantly.

Correlation is usually possible with zoom bands. In the extreme, however, experiments with two or
more stations having mismatched frequency setups may require an excessive number of DiFX zoom
bands that additionally may have unequal bandwidths. The DiFX correlator supports such unusual
setups natively, but the common export formats of the DiFX correlator FITS-IDI7 and HOPS8 do not.

The GMVA-ALMA 2017 campaign encountered precisely these issues and was the trigger for the
DiFX developments. It serves also as the example for the implemented generic workaround, shown in
Figure 3. Recorded frequencies are first split into suitably fine-grained zoom bands that are used in a

6 A detailed report will be published on Zenodo at https://zenodo.org/communities/radionet-eu-brand/
7 http://www.aips.nrao.edu/FITS-IDI.html
8 https://www.haystack.mit.edu/haystack-observatory-postprocessing-system-hops/

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 10 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

normal DiFX zoom band correlation. Neighbouring zoom bands are concatenated along the frequency
axis (or, “de-zoomed”) to form wideband visibilities. A spectral averaging step can be added to yield
the PI-requested number of channels. The final frequencies (or, “output bands”) of the visibilities cover
the original observed sky frequency range and have a FITS-compatible uniform bandwidth. The
method described above for recouping FITS-IDI/HOPS compatible visibility data was implemented as
a standalone DiFX utility at first (difx2difx.py). Later it was also implemented natively in the DiFX
correlator (DiFX Output-bands branch; likely future DiFX 2.7 release).

Figure 3: Example of a mixed-frequency setup, not to scale, showing the first GMVA-ALMA observation Sgr~A* in
2017. Correlation with requested 58~MHz wide zoom bands was impossible due to the inadvertent narrow-band
32~MHz setup at two stations (orange boxes). Correlation under DiFX~2.5 with manually configured zoom bands (grey
boxes) and post-processing the visibilities recovered the desired 58~MHz IF(s) (bottom) and allowed data to be
converted to FITS-IDI.

The correlator workflows of the two approaches are illustrated in Figure 4.

Figure 4: Processing steps for an offline implementation (top) using visibility data from plain DiFX~2.6. Native
processing in DiFX Outputbands (bottom) avoids the overhead of temporary files, at the cost of changes to DiFX

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 11 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

6.1 Script for manual conversion of output bands
The DiFX correlator generates correlated data in the cross-spectral domain. This simplifies the task
of generating “legal” output bands for data export significantly. All zoom bands can quite easily be
concatenated in cross-frequency space followed by cutting the resulting band(s) into sub-bands of
the same width. In the extreme case the user can choose whatever width is considered useful for
further data reduction.
A Python-based spectral reassembly script (difx2difx.py) was implemented in 2017 and is in
production use for GMVA VLBI correlation. Given a set of DiFX visibility data files and a
configuration file difx2difx.py carries out the concatenation of zoom bands present in the data, as
sketched in Figure 3, and frequency averages the final output visibilities. Output are a new set of
DiFX visibility data files and their metadata.

The offline processing was tested for geodetic-like VLBI using visibility data from a simulated VLBI
observation. The devised frequency setup had consistent BRAND-like 128 MHz recorded bands
that were purposefully offset by multiples of 1 MHz at the different stations. The synthetic
observation was correlated in DiFX 2.6.1 with 1 MHz zoom bands. Output bands could be
synthesized successfully across the covered common sky frequency range. Processing had lower
overheads than GMVA VLBI processing. Overall results indicated that BRAND-utilizing VLBI
observations when correlated under DiFX 2.6 can indeed be processed using the offline method.

6.2 Native Implementat ion in DiFX Correlator
The zoom-band/difx2difx solution can become quite cumbersome and error prone for complex
scenarios as we envisage for BRAND and other mixed networks. A native implementation was
thus made in DiFX to ease the operation and improve upon the correlator workflow and its
robustness. This will be particularly important once the EVN or other networks will observe
regularly with mixed setups.

Changes to DiFX were kept to a minimum; the visibility data format remains unchanged,
configuration files likewise except for the addition of an optional new parameter. Software changes
included non-architectural changes to the correlator (mpifxcorr), extension of the correlation setup
utility (vex2difx), and extension of a library (difxio). Converter utilities (difx2fits, difx2mark4) were
updated negligibly by calls to a new frequency lookup function in difxio.

6.2.1 Vex2difx
New parameters were added to the DiFX configuration file (v2d file). Correlation jobs that want
to use the outputband feature need to specify the following optional parameter:

• SETUP section: outputBandwidth = [auto | <bandwidth> in MHz]
When the outputBandwidthparameter is specified and has a setting of auto, an output IF
bandwidth is derived based upon the observed sky frequencies and recorded bandwidths of all
stations as defined in the VEX input file. Alternatively, the output bandwidth can be set explicitly
with <bandwidth>, e.g, 58.5 for 58.5 MHz. Note that there are no guarantees that a particular
output IF bandwidth can indeed be synthesized from the frequency setup in the VEX file.
Vex2difx will show an error in this case, and a different bandwidth setting should be tried.

A second optional parameter, gainOffsets, was added to allow experimental rescaling of
amplitudes in the recorded bands:

• ANTENNA section: gainOffsets = < ∆gain of freq 1, ∆gain of freq 2, ...> with ∆gain ∈ [−1,1]
that are relative to unity gain

The new gainOffsetsparameter permits manual alignment of the bandpasses of the recorded
bands that contribute to an output band. Similarly, DiFX 2.6 parameterf reqClockOffs allows
removal of delay offsets (phase offsets) between recorded bands. Both parameters can be
used to compensate for discontinuities that may occur inside an assembled output band. This

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 12 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

manual approach is tedious and gainOffsets in particular will affect amplitude calibration. The
preferred approach is to instead use a station-based complex bandpass calibration during
postprocessing.

6.2.2 Automatic Zoom Band Generation
In both modes of the outputBandwidthparameter (auto, or explicit bandwidth) vex2difxintroduces
new zoom bands as necessary.

Figure 5: lIllustration of automatic zoom band generation in vex2difx driven by band edges of recorded
bands and the requested output visibility bandwidth. Each zoom band gets assigned a target outputband (N: 1
mapping) and the required assembly of visibility data is performed in mpifxcorr at correlation time.

The process of automatic zoom band generation is illustrated in Figure 5. Starting from a target
bandwidth (v2d file) the sky frequency range covered by the recorded bands (VEX file) is
segmented into spectral slices, dictated by band edges of the recorded bands. Any spectral
slices with insufficient stations are discarded. Spectrum towards a new output band is
accumulated from the remaining set of consecutive spectral slices. This is done by injecting
matching-size or narrower-sized zoom band definitions (zf0 to zf2 in Fig. 3) into the spectral
slice. The zoom bands are added into the DiFX .input file. This continues until one complete
outputband IF is covered (IF0 in in Fig. 3). The bandwidth accumulation process is repeated for
the next outputband IF using the remainder of spectral slices, using, e.g., zf3 to zf5 to produce
IF1 in Fig. 5.

6.2.3 Internal Mapping of Visibi l i t ies into Outputbands
DiFX mpifxcorr was extended to allow concatenation of visibility data, with time and spectral
averaging. The implementation redirects visibility data of zoom and recorded band(s) directly into
the correct spectral channels within the final target band (N: 1 mapping). The mapping is defined
in the .input file. The spectral concatenation process has a relatively compact implementation.
For details see report at https://zenodo.org/communities/radionet-eu-brand/.

6.2.4 Other minor problems solved
1. Frequency Averaging: DiFX 2.6 computes fringe-stopped auto spectra at high spectral

resolution. A frequency averaging step is applied optionally and at an early stage, while the
cross-products are formed. All visibility data are stored in averaged form. With output bands,
the high resolution auto spectra of zoom bands can have a number of spectral channels that is
not divisible by the averaging factor. Bookkeeping of fractional channels was added.

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 13 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

2. Spectral Channel Flagging: Channels of an outputband may need to be flagged when they carry
no meaningful phase information, or their amplitude is hard to calibrate. It is also possible that
one spectral output channel is the average of the channels of two contributing bands.

The easiest approach is to flag such channels. Vex2difx was extended to produce a flag file
(<jobname>.channelflags) for each correlation job. Each line contains one flagging entry, consisting
of an antenna name, MJD time range, numerical ID of a DiFX frequency, the range of channels
(zero-based) to flag in that frequency, and lastly a flagging reason.
The converter program difx2fits was extended to import the channel flags directly into FITS-IDI
table FG#1, making them available to CASA and AIPS postprocessing.

6.3 Special Cal ibrat ion Steps in Post-Processing
In addition to basic flagging, there are two critical calibration steps for DiFX output-bands. Namely,
a priori amplitude calibration with modified T*sys data that account for combined bands, and
complex bandpass calibration to remove in-band discontinuities.

1. Flagging: In case of FITS-IDI data the FITS file comes pre-populated with channel flag
records for all outputbands,

2. Calibration of Flux Density Scale: Calibration is based on a time series of station T*sys
measurements, and a static DPFU and gain-elevation curve model. The T*sys data are
usually determined over frequency ranges identical to the recorded VLBI bands. With
outputbands data of several recorded bands might be combined.

3. Calibration of In-Band Amplitude and Phase: When the frequency setup of an observation
is such that several narrow recorded bands must unavoidably be combined in order to
provide an array-wide common output band, certain inter recorded band mismatches will
produce discontinuities in the visibility amplitudes and phases within the output band.

This problem will most likely not apply to BRAND data, but might show up in observations
in mixed networks. Spectral mismatches occur due to per-band differences in digital signal
processing in a VLBI backend, or in a phased array correlator and VLBI formatter. Such
effects are known from GMVA and EHT observations.
Future study is still needed and should inspect whether a single bandpass calibration,
which could solve these problems, remains stable throughout an observation, whether
such a calibration works in position-switched spectral emission line observations, as well as
how geodetic VLBI observables may be affected by residual in-band phase discontinuities
or residual mismatched delays between bands.

7 Literature
[1] Himwich, E., “Introduction to the Field System for Non-Users”, in: International VLBI Service for

Geodesy and Astrometry 2000 General Meeting Proceedings, 2000, pp. 86–90.

[2] Deller, A. T., “DiFX-2: A More Flexible, Efficient, Robust, and Powerful Software Correlator”,
Publications of the Astronomical Society of the Pacific, vol. 123, no. 901, p. 275, 2011.
DOI:10.1086/658907.

H2020-INFRAIA-2016-2017/H2020-INFRAIA-2016-1 Page 14 of 14

RadioNet has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730562

8 Acronyms
ADC Analogue Digital Converter
AIPS Astronomical Image Processing System
ALMA Atacama Large Millimetre Array
APEX telescope Atacama Pathfinder Experiment Telescope
API Application Interface
BRAND BRoad-bAND
CASA Common Astronomy Software Applications
COVID-19 Corona Virus disease 2019
CSIRO Commonwealth Scientific and Industrial Research Organisation
DBBC3 Digital Base-Band Converter 3rd generation
DDC Digital Down Conversion
DiFX Distributed FX
DPFU Degrees Per Flux Unit
EAVN East Asian VLBI Network
EDD Effelsberg Digital Device
EHT Event Horizon Telescope
EVN European VLBI Network
FFT Fast Fourier Transformation
FITS Flexible Image Transport System
FITS-IDI Flexible Image Transport System - Interferometry Data Interchange
FPGA Field Programmable Gate Array
FTDI Future Technology Devices International company
FX Refers to an FX correlator: Fourier transformation followed by cross correlation
GMVA Global Millimetre VLBI Array
GSps Giga samples per second
GUI Graphical User Interface
HOPS Haystack Observatory Processing System
HSSI High Speed Serial Interconnect
ID Identifier
IF Intermediate Frequency
IVS International VLBI Service for Geodesy and Astrometry
LBA Long Baseline Array
Matlab Software
MHz Mega Herz
MJD Modified Julian Date
NOEMA Northern Extended Millimetre Array
OCT flexible in input band position and width filtering mode
RAID Redundant Array of Independent Disks
RF Radio Frequency
RFI Radio Frequency Interference
RS232 Recommended Standard 232: Serial data protocol
SMA Submillimetre Array telescope
SPI Serial Peripheral Interface
Tsys System Temperature
USB Universal Serial Bus
VDIF VLBI Digital Interface Format
VEX VLBI EXperiment definition
VGOS VLBI Global Observing System
VLBA Very Longa Baseline Array
VLBI Very Long Baseline Interferometry
10 GE 10 Gbit Ethernet

© Copyright 2020 RadioNet
This document has been produced within the scope of the RadioNet Project. The utilization and release of this
document is subject to the conditions of the contract within the Horizon2020 programme, contract no. 730562

